For months, we in the Henry M. Rowan College of Engineering have watched our new building go up. The foundation. The steelwork. The bridge that will connect it to our existing Rowan Hall. From a structural standpoint, it is a thing of beauty even in skeletal form, a massive building, a dramatic addition to the Rowan University landscape. It’s easy to see what the future holds, what this will look like when we open it in Spring 2017 – to picture the classrooms, labs, offices and study areas covering four floors, to see them vibrate with activity.

In addition to enabling our College to grow to 2,000 students, the new facility also is a metaphor for where we are 20 years after we first opened our doors. It reflects a story of need and growth, of vision and commitment.

We started as the vision of one man, the late Henry M. Rowan, who with his wife Betty donated $100 million to our University with the stipulation we revitalize engineering education. We met and exceeded that goal. We continue to strive to meet his vision and to exceed the bar he set for us.

Every day, we work to build our College. Rowan Engineering attracts first-class faculty, and we added 20 world-class scholars to our faculty during the last three years. We expanded our offerings to meet demands, and our new Ph.D. and Biomedical Engineering programs are thriving. Our enrollment is nearly double what it was five years ago. Our collaborations with government and industry are on the rise, and our sponsored research has more than quadrupled during the last three years.

In this report, you will see just a few stories about what we are doing, where we are going and how we are continuing to help produce outstanding engineers and drive the innovations of today and tomorrow. To learn even more, visit rowan.edu/engineering.

Dr. Anthony Lowman
Dean
Biomedical Engineering Ph.D. students Laura Osorno (left) and Liana Wuchte work on drug release samples as part of a study funded by the National Institutes of Health on the development of novel medical devices to treat glaucoma.
Glassboro State College receives a gift of $100 million from Mr. and Mrs. Henry M. Rowan

Dr. James Tracey is named dean of Rowan College’s School of Engineering

Groundbreaking for the state-of-the-art engineering building takes place

Rowan Engineering welcomes Dr. Steven Chin as associate dean

Rowan University welcomes Dr. Dianne Dorland as the second dean of Engineering
Timeline 1992-2015

Commencement day for Rowan's first class of engineers

Rowan College of Engineering receives accreditation retroactive to October 1999

U.S. News and World Report ranks Rowan University's ChE program fifth in the nation

Nobel Prize winner Dr. Horst Stormer speaks at Rowan University College of Engineering

Rowan students travel to Africa to work on new water system through Engineers Without Borders-USA

U.S. News and World Report ranks Rowan College of Engineering second in ChE, eighth in EE and ninth in ME

David Lester, senior EE student, takes top honor at the annual Walt Disney Imagination design competition

Rowan College of Engineering welcomes its largest freshman class to date — 220 students

PSE&G, under Robert Braun, partners with the College of Engineering on the AWE Program (Attracting Women into Engineering)

Dr. Anthony Lowman is named dean of the Rowan University College of Engineering

Dr. Stephanie Farrell and Dr. Kausar Jahan land prestigious Fulbright Awards

Rowan Engineering breaks ground for new Rowan Hall expansion

Rowan College of Engineering introduces the Biomedical Engineering Department, headed by Dr. Mark Byrne

Henry M. Rowan Family Foundation commits $15 million to the College of Engineering

The University names the College the Henry M. Rowan College of Engineering
like any other teenager growing up in the 1990s, George Lecakes was addicted to video games. Lecakes even took it one step further—he dreamed of a career designing the games he played.

When it came time for college though, Lecakes never considered studying video game design. Instead, he looked into programs in the family business: engineering. His search ended after one personal, faculty-led tour of the labs and classroom facilities at Rowan University.

“At Rowan, there was a unique touch,” said Lecakes. “I knew that everyone wanted to see me succeed, and I believed they would do what they could to help me get there.”

Lecakes arrived at Rowan in 2002 and worked diligently to complete his degree in civil engineering. However, it was not until the end of his program that Lecakes discovered his passion: virtual reality. He instantly felt at home...
working with Dr. Shreekanth Mandayam, founder of the VR Lab, using some of his trusted video game controllers.

After he completed his undergraduate degree in 2007, Lecakes was not ready to leave the growing VR Lab. Luckily, Mandayam recommended him for Rowan’s master’s program.

“Dr. Mandayam helped me to see the opportunity that was right in front of me,” said Lecakes. “He gave me the support that drew me to Rowan in the first place, and it was that support that encouraged me to continue at Rowan.”

Three years later, Lecakes completed his master’s degree and accepted a position as a full-time research associate in the VR Lab. As an associate, Lecakes contributed to its transformation — from a small facility to a state-of-the-art VR Center.

Now the director of the VR Center he helped grow, Lecakes manages a team of interns and conducts research projects on topics varying from truck driver fatigue to unmanned aircraft systems.

This year Lecakes started working towards his third degree from Rowan: the new Ph.D. in Engineering. Once again a Rowan student, Lecakes spends his days realizing his dream at his home of 13 years – Rowan.

“At Rowan, I found not only a home but also a place where I can pursue my high school dream,” said Lecakes. “I took my hobby and turned it into a career. Now, I am applying my work to things that matter and research that will have a profound impact on our world.”
Drivers on the nation’s roads and highways may have a safer and less-congested ride in the future thanks to researchers at a state-of-the-art transportation engineering facility set to launch at the South Jersey Technology Park at Rowan University, in Mantua Township. The Center for Research and Education in Advanced Transportation Engineering systems (CREATEs) will facilitate cutting-edge research that will enhance the transportation industry through the creation of improved construction materials and pavement technologies, by developing solutions to ease traffic congestion and by introducing efficiencies to improve construction and infrastructure. Slated to be up and running by fall 2016, CREATEs will include a 50-foot by 90-foot structure that will house equipment, offices and space to run tests, as
well as an outdoor testing environment that can be designated for specific types of materials and clients.

The Center will house a Heavy Vehicle Simulator (HVS) – the only one at a college or university in the Northeast United States – which will be able to determine the long-term effects of wear and tear on roadways. The HVS, which has the capacity to mimic up to 20 years of traffic usage, will enable researchers to evaluate such topics as soil failure, moisture impact and road structures. Such testing will ensure quality of materials and introduce economic efficiencies.

While there is no absolute substitute to determine how a material will hold up as opposed to an actual 20-year field performance of a roadway. Dr. Yusuf Mehta, professor of civil and environmental engineering, said CREATEs and the HVS will help “close that gap.”

“Twenty years is too long to wait to get answers of how a material will perform in a range of roadway conditions,” said Mehta, who will lead the Center’s efforts. “Lab results are good, but the HVS can demonstrate what actually will happen in the field. This tests reality. That is why it is so valuable.”

Funded by nearly $5 million in grants and contracts from the State of New Jersey, the U.S. Department of Defense/Army Corps of Engineers and the New Jersey Department of Transportation, CREATEs will drive the regional economy through the creation of permanent full-time jobs and high-end workforce-development opportunities for undergraduate and graduate students at the Henry M. Rowan College of Engineering.

Mehta plans to conduct work for the Garden State and other states, government agencies and businesses. Eventually, various states may “own” a section of CREATEs, which will be dedicated to just their needs. Within its first two years of operation, the Center will employ between five and 10 professionals who will conduct testing for asphalt, concrete, soil and other design and construction materials.

He added, “We can help states develop something better for their roads. If something fails, we can help them find a solution.”
Although he grew up about a half hour from the Rowan University campus, Jeff Eker pursued an engineering education that stretched around the world.

Eker, a native of Haddonfield, New Jersey, arrived at Rowan in 2012 with burgeoning interests in international cultures and entrepreneurship. As an electrical and computer engineering major in the Henry M. Rowan College of Engineering, Eker pursued these interests in bold ways.

“What I enjoy most is using engineering innovation to solve real business problems,” said Eker. “As a Rowan student, I was able to connect this goal with my interest in the role of international relationships in helping engineers and businesses succeed globally. I had an exciting journey exploring my ambitions, thanks to the support I received from the Rowan Engineering community.”

Combining his interests in international cultures and entrepreneurship, Jeff Eker ’16 launched CultureCloud as a Rowan engineering undergraduate.
Among the notable stops on Eker’s journey was a visit to Australia last May, where he participated in the Australian-American Institute of Electrical and Electronics Engineers (IEEE) Student Branch Exchange. Eker founded the program with an Australian student he met while studying in Germany in January 2014. During his time in Australia, Eker used the opportunity to immerse himself in the local culture, while touring industry sites, visiting universities and participating in an international robot competition.

A few months later, Eker hopped on another plane, this time arriving in Boston as a summer intern for Rockwell Automation, the world’s largest industrial automation and information provider. During his internship, global-minded Eker attended an IEEE conference in Asia and worked with his Rockwell supervisor to add a business trip to Singapore. In Singapore, Eker met with and presented to senior-level management and toured Rockwell facilities.

From there, Eker attended the IEEE Region 10 Student, Young Professional and Women in Engineering Congress in Sri Lanka. He was the only American student representative among students and professionals from more than 40 countries. The entire roundtrip, from Boston to Singapore to Sri Lanka and back was a whirlwind for Eker, lasting just eight days.

“During my time abroad, I recognized that there is a need for people to connect with one another in real-time regardless of where they live, work or travel,” said Eker.

This led to the birth of Eker’s latest venture, “CultureCloud.” CultureCloud is a smartphone application that allows users to discover people nearby with similar interests and communicate using a messaging feature. Sixteen Rowan Engineering students have been involved on the project.

Now a graduate, Eker hopes to keep CultureCloud going with the support of venture funding. He also is planning on entering the consulting field and continuing his studies on the graduate level in the future.

“Being a Rowan student has opened up so many doors for me. Here, you can achieve anything as long as you have the drive to do so,” said Eker.
At some point in the future, Walt Walker might take a traditional vacation. For the last seven years, the two-time Rowan Engineering alumnus has enjoyed using his time off from his job as an environmental engineer at BCM Engineers in Plymouth Meeting, Pennsylvania, to perform service in developing nations through collaborative, community-driven projects. To Walker, being a professional engineer means more than just developing technical solutions; it’s about solving problems wherever possible.

“Often the focus of engineering practice is on the technical work,” said Walker, who started a new position in May as a project manager for environmental engineering firm Greeley & Hansen in New York City. There he is looking at the “big picture” as he assists with

Two-time engineering alumnus Walt Walker (‘05, M’06) is contributing to a healthier world at home and abroad.
managing the progress of water and sanitation infrastructure projects on behalf of G&H’s client, the NYC Department of Environmental Protection. “But at the core, engineers are problem solvers. We have the expertise to help make the world better. For me, the volunteer work that I do is more than a hobby; it’s a big part of who I am.”

Since graduating with a B.S. in civil engineering from Rowan in 2005 and an M.S. in environmental engineering in 2006, Walker has embraced his role as a problem solver – on the job and off.

Walker has been equally proud of his role as president of the Philadelphia chapter of Engineers Without Borders-USA (EWB) from January 2012 to May 2016. The non-profit organization partners with developing communities to design and build sustainable engineering projects. On his time off, Walker traveled to countries such as El Salvador, Guatemala, Malawi and the Philippines to volunteer and assist with water infrastructure projects. Though he recently stepped down from the presidency, he still is an active EWB-USA volunteer as a regional EWB student chapter mentor and advisor to EWB-Philadelphia. Eventually, the new Brooklyn resident plans to get involved with the NYC professional chapter.

Walker traces his passion for service and the environment directly to the experiences he had at Rowan. As a civil engineering major, he had the opportunity to work on a clean water project in Bangladesh during his senior year. This experience helped propel him to graduate school at the University, where he focused his studies and research on environmental engineering, collaborating closely with Dr. Kauser Jahan of the Department of Civil & Environmental Engineering.

He returned to Rowan in spring 2015 to proudly accept the first Henry M. Rowan College of Engineering Medal of Excellence for Alumni Achievement and address the 2015 Rowan Engineering graduates during commencement exercises.

“My five years at Rowan really planted the seeds for what I have become,” said Walker. “I was truly inspired by the practice of environmental engineering and knew this is where I wanted to be.”
Innovating the Engineering Curriculum

A hula hoop is not something students typically might find in their classroom at Henry M. Rowan Hall. But thanks to Dr. Cheryl Bodnar, assistant professor of chemical engineering, the popular childhood toy is now being used to help Rowan engineering undergrads hone the problem-solving skills they will need as future professional engineers.

One of the newest members of the Rowan faculty, Bodnar has brought innovative, games-based learning methods to the Rowan undergraduate engineering curriculum. Bodnar sees great potential in incorporating game-like activities in teaching engineering concepts and developing leadership, communication and
entrepreneurial skills. She emphasized that games can help support greater student engagement and learning retention.

“When used as a launching point to approach engineering problems, game-based learning and gamification techniques can help students to become more immersed in their learning, while challenging them to use their creative and problem-solving capabilities,” said Bodnar, who joined the Rowan faculty in fall 2015. “As they become more personally engaged in their learning and gain instantaneous feedback, students start to learn at their own pace and will retain more information long term.”

Bodnar introduced Rowan students to their first game-based exercise on day one of the spring 2016 freshman Engineering Clinic program, where they competed in small groups in a hula hoop race. The goal was to move the hoop around the circle in the shortest period of time. Students were required to hold hands and could not let go of one another. Eventually, the students realized that they didn’t have to physically pass the hoop from one person to another to achieve the desired outcome; rather they could just have the hoop stay in one place and have the entire group move around it in a complete circle.

“Students tend to think there is only one solution to a problem,” said Bodnar. “What this exercise teaches them is not to impose limitations when working to solve problems.”

Bodnar has joined with Dr. Leticia Britos Cavagnaro of Stanford University, Dr. Joseph Tranquillo of Bucknell University, Victoria Matthew of VentureWell and professional game designers Pete Vigeant and Bryan Vitale of the consulting group The Completely Surrounded to form Ideas at Play, a national workshop that trains engineering faculty on integrating games for teaching innovation and entrepreneurship in the classroom.

Her interest in game-based learning is rooted in her background in instructional design, facilitation and evaluation. Bodnar obtained her certification as a Training and Development Professional from the Canadian Society for Training and Development in 2010. She came to Rowan from the Swanson School of Engineering at the University of Pittsburgh, where she was an assistant professor in the Department of Chemical and Petroleum Engineering.

“I was looking for a unique and flexible environment to further expand my game-based learning concepts,” she added. “With its multidisciplinary engineering curriculum and clinic program, Rowan offers the perfect setting.”

Games-based learning techniques, such as the hula hoop race, are helping Rowan engineering students test their problem-solving skills in unique ways. Taking part in the exercise during the spring 2016 Engineering Clinic program are (clockwise from top) Nicholas Ambrose ’19 (passing the hoop), Ryan Carroll ’19, Devin Connelly ’18, Jeffrey Stransky ’19, Joanna Soyring ’19, Bridget Black ’19 and Nicholas Kluzynski ’19.
To support the continued growth and future expansion of the Henry M. Rowan College of Engineering, the College’s new state-of-the-art building is moving steadily toward its planned opening of spring 2017.

The $71-million structure will be a three-story, 90,500-square-foot addition to the current Henry M. Rowan Hall. The existing facility will be renovated completely, and the two buildings will be joined together to form one new teaching and research facility for Rowan Engineering. Funding for the project comes in part from the Building Our Future bond act, which was approved by New Jersey voters in 2012. Rowan was allocated $117 million of the $750-million bond funds, which also will help fund a new building for Rowan’s William G. Rohrer College of Business.

The new building will enable the College to grow its transactional research programs and open its doors to more qualified students from around the world. With the added capacity, the College will be able to increase its enrollment to 2,000 students by 2023 and further progress toward its goal of achieving $25 million in sponsored engineering research, also by 2023.

“Through this substantial investment, the State has made it possible for us to admit hundreds of new students...”

Participating in the groundbreaking ceremony for the new building for the Henry M. Rowan College of Engineering are (from left to right) Dean Anthony Lowman, the late Henry M. Rowan, Gov. Chris Christie, New Jersey Senate President Stephen Sweeney, Rowan University President Ali Houshmand and Chairman of the Rowan University Board of Trustees Linda Rohrer.
to our world-class engineering program,” said Dr. Anthony Lowman, dean. “These students will be able to take advantage of endless opportunities to collaborate with existing and new faculty members in diverse fields of engineering study, participate in innovative hands-on learning programs and gain the knowledge and skills that will make them future engineering experts.”

The new facility has been designed to emphasize many of the unique features of the Rowan Engineering learning environment. Like the original layout of Rowan Hall, research labs and classrooms will face faculty offices to support deeper collaboration between students and professors. The dean’s office suite and conference room will be easily accessible on an enclosed footbridge that connects the new structure with the soon-to-be renovated Henry M. Rowan Hall. All common spaces will be open and transparent through glass walls, putting engineering activities on greater display for visitors.

The facility also will make use of a range of sustainable design features to make it more environmentally friendly and resource-efficient. These include the use of bioswales in the building’s parking areas and along its promenade to filter storm water runoff through natural plants to remove silt and pollution. To enhance energy performance, the facility also will utilize a solar panel array atop the footbridge area and deploy white roofing to reflect the sun and support greater heat and cooling absorption.
As it pivots to the future and looks to better position itself to tackle a dynamic array of world challenges, global defense industry leader Lockheed Martin is gaining a valuable assist from Rowan Engineering.

Lockheed and Rowan, strategic partners since 2014, are taking their relationship to a new level. The two partners are heightening their focus on developing a new generation of engineering experts who are trained and ready to enter the defense industry right out of school.

“As technology and innovation continue to move at a faster pace, we realized, as a company, we need to start adapting quicker as well,” said Todd A. Tangert, combat systems architect, Lockheed Martin Mission Systems and Training in Moorestown, New Jersey. “One way that we are working to reinvent ourselves is to infuse our workforce with talented engineering graduates who can make a contribution from day one.”

Tangert pointed out that achieving this goal is not as easy as it might seem. “The defense industry can pose challenging hurdles for new graduates,” said Tangert. “The industry tends to speak its own language, and business processes are often complex and unique as well. The learning curve is high.
When I started out, I remember it taking a couple years before I became truly comfortable.”

“Working with Rowan, we can change that. By engaging and interacting with students who have an interest in defense technology and solutions, we can better help them to develop the knowledge and skills they need to more seamlessly enter the industry and contribute immediately upon graduation,” he added.

To fulfill this vision, Lockheed and Rowan have worked together to expand the undergraduate electrical and computer engineering curriculum with four new courses debuting in the spring 2016 semester, each covering a critical dimension of a combat system – radar; command and control; command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR); and weapon systems. Lockheed engineers, serving as adjunct Rowan Engineering professors, are teaching the classes.

“This is the first time we have developed courses specific to combat systems,” said Tangert. “The topics that are covered line up directly with the work Lockheed does for the Department of Defense.”

Lockheed Martin and Rowan also have extended their collaboration in the Rowan Engineering Clinic program. Two new clinics currently underway focus on cyber security and pattern/image recognition – each a significant issue for the defense industry. While further helping to engage Rowan engineering undergraduates with Lockheed engineers, the clinics also offer valuable knowledge transfer opportunities for Lockheed as well.

“Rowan is a unique environment where students are encouraged to be innovative and think creatively in solving problems,” said Tangert, who spends two afternoons a week at the South Jersey Technology Park at Rowan University. “In the clinics, our subject-matter experts often find themselves doing as much listening as talking, seeing how students might tackle problems differently and then bringing those insights back to Lockheed for deeper discussion.”
Dr. Mark Byrne readily admitted that he loves coming to work every day. As the founding chairman of the Department of Biomedical Engineering at the Henry M. Rowan College of Engineering, Byrne is building a dynamic academic and research program that operates at the intersection of engineering, healthcare and biology. Well into his second year at the helm, Byrne is excited about the progress that has been made and the opportunities that lie ahead.

“It’s truly an exciting time to be here,” said Byrne. “The College is well-positioned to build a world-class biomedical engineering program and become a leader in research as well. The Department of Biomedical Engineering continues to make tremendous progress in attracting the best and brightest faculty and students at both the undergraduate and graduate levels. Our future holds great promise.”

Byrne arrived at Rowan in fall 2014 with a bold vision: build an internationally recognized biomedical engineering program that is a leader in research and education and that turns bright young minds into high-quality industry or academia-ready professionals.

To fulfill this vision, Byrne has been ambitious in hiring new faculty and expanding the Department’s degree offerings. A team of seven faculty members, including primary and joint appointments, now leads undergraduate and graduate biomedical engineering
programs for a student population that has quickly grown to more than 100.

“Biomedical engineering is a field that is typically at the forefront of innovation and technology as patients cannot wait for improved quality of life,” said Byrne. “In order to put our students on a trajectory to be successful, we need to offer novel academic programs and expose them to faculty who push the envelope in their research and are great teachers in the classroom.”

Faculty research is also off to an exciting start with approximately $1 million in extramurally funded contracts from the National Institutes of Health, National Science Foundation, New Jersey Health Foundation and private industry.

Byrne also is aiming to expand the Department’s enrollment through a host of new programs. Since fall 2014, the Department welcomed a number of students as the first group of candidates for the inaugural Ph.D. degree in biomedical engineering. The Department’s doctoral student enrollment is leading the College and is expected to be more than 15 students this fall. Byrne also is developing other new graduate programs, including an accelerated offering that enables students to earn their B.S. and M.S. degree in five years, as well as joint doctoral-professional degree programs with the Rowan University School of Osteopathic Medicine and Cooper Medical School of Rowan University.

When Byrne speaks of having faculty members serve as inspirational models for students, he too fits that mold. In addition to his duties as Department head, Byrne is a pioneer in the field of nanostructured biomaterials engineering, controlled therapeutic delivery, polymer engineering and biomedical devices. He is also the co-founder and chief technology officer of OcuMedic, Inc., a drug-delivery company. He has mentored thousands of students in the classroom and trained more than 100 students in his laboratory. He and his doctoral students have more than nine issued patents, with five pending.

Free time is a luxury that Byrne doesn’t have a lot of, but he said he wouldn’t have it any other way. “Each and every day is filled with new opportunities. I’m thrilled to be part of the wonderful progress that is happening at Rowan.”
In Gratitude

Thank you to our generous donors who contributed between January 1, 2015 to December 31, 2015, and help make the Rowan University College of Engineering an outstanding, nationally recognized engineering program.

ENGINEERING ALUMNI
Anonymous (2)
Adegbenga Saburi Badru M’12
Jason D. Berenbach ’04
David ‘01, M’03 and Christina M. Bowen ’01
Michael Bucceroni ’15
Brighid Burgin ’12*
Jesse A. Butch ’13
Christopher James Calefati M’13
Nicholas J. Cincotti ’13
Robert Samuel Cohen ’15
Brittany Coleman ’15
Laura Coleman ’03
Daniel Collins ’15
Justin D. Costa ’13
Peter R. D’Amico ’13
Sarah Helen Davis ’13
Matthew Robert D’Eustachio ’15
Christopher W. ’00, M’03 and
Maryanne Dromgoole
Eric Daniel DuBois ’12
Ryan Fillman ’08, M’09
Brian Finch ’15
Sarah Friedman and Michael J. Burg ’01
Kady Gandy M’10
Andrew W. Gaus ’15
Ken Gemmell ’00*
Mark R. Ghose ’02
Nicole Ruth Giannelli ’13
Allan H. Giglia ’10
Gregg H. Green M’01
Amanda Harasts ’15
LaDonne Harris ’10
Travis T. and Brooke J. Haskins ’03
Jonathan Hogg ’10
Nicholas Edward Holsman ’14
Terrance J. Hopely ’08
Christopher ’03, M’04 and Brianne Kanach ’02
Patrick Kane ’02
Ryan and Jacqueline Keepers ’05*
Angela Kinsella ’15
Steven J. Latman ’08, M’09
Thomas J. Lee ’04
Patrick Michael Lynch ’14
Anthony R. ’02, M’03 and Dana M. Marino
Jonathan L. Martinez ’13
Jennifer Alicia Matczak ’13
Michael J. Melniczuk ’03
Paul Andrew Meyer M’07
Timothy J. Miller ’12
Bryan C. Nese, Esq. ’04
Matthew A. ’08 and
Kimberly D. Pavelchak ’08
James D. Roche M’11
Keith Charles Roller ’12
Stephen Salvatore ’00
Anthony Sanchez ’14
Ulrich K. Schwabe ’07, M’11
Alexander Scriffiano ’08
Amol Shah ’00
Vishal R. Shah ’02
Demian V. Smirnov ’13
Steve Sonntag ’02
Jessica L. Staszewski ’03
Joseph J. Switzer ’01
Jeffrey Tereby ’11
Kevin Varghese ’15
Mark E. Wessel ’06
Kenneth Whelan ’02, M’10
Theodore E. Williams ’05
John Wittthohn ’03
Thomas Xenakis ’00

OTHER ALUMNI, PARENTS,
STAFF AND FRIENDS
Anonymous (3)
Colin A. Buller ’91*
David S. ’82, M’02 and Lisa Burgin*
Anthony P. Calabrese ’78*
Steven and Jacqueline Mae Chin
Len E. ’84 and Sharon Daws*
Cherish DiSante ’12, M’13
Sean M. ’05 and Irena Fischer*
Dominic and Jacqueline Giacobbe
Stephen J. Gill ’09*
Letha A. Hammon and C. Bland Dickey*
John R. and Patricia Jones*
Stephen Patrick Krone ’13
Anthony Lowman*
Howard Lubert M’74*
Cynthia Lynch
Kaitlin Mallouk
William L. and Sandy Elizabeth Maxwell ’69, M’84*
Norman V. Mayall ’63, M’67
Charles ’86 and Genevieve McGlynn
Leonard A., Ph.D. ’85 and Seniz U. McMullen, Ph.D.*
Carmela Pane, M.D.*
Michael James Paule
Brittany L. Petrella ’11
Kimberly L. Razavi ’87
John J., Jr. ’04 and Katy Reiser
Alf H. Rix ’52
Henry and Lee Rowan*
Henry M. Rowan Family Foundation*
Louis and Holly S. Ruggiero

Mariano J. and Marcela Savelski ’05, M’08
David Skillman ’98
Manning J., III and Virginia Rowan Smith*
Paul and Mary M. Staehle
Joseph F. Stanzone, III
Beena Sukumaran and Srinivasan Vanchinathan*
Fangqiu Sun and Hong Zhang
John Tepper
Paul J. Tully ’99
Joan E. Wagner ’76

ORGANIZATIONS
American Society of Civil Engineers, SJ Branch
Boeing Company
Cape Bank
ExxonMobil Foundation*
FMC Corporation
Gourmet Dining, LLC
Hewlett Packard
Honeywell Building Solutions
IEEE Aerospace and Electronic Systems*
IEEE Institute of Electrical and Electronics Engineers*
Lockheed Martin Corporation*
LMAPC Charity Program*
Lockheed Martin University Gifts
Maenner and Associates*
Merck Company Foundation
PGFM Solutions, LLC
Phoenix Contact Development & Manufacturing, Inc.
Professional Engineering Society of Southern NJ, Inc.*
PSEG*
PSEG Foundation*
PSEG Power LLC*
Republic Bank of Glassboro
South Jersey Industries*

*Denotes gifts or commitments of $1,000 and above or President’s Forum giving club membership. Graduates of the last decade are eligible for the President’s Forum membership with gift credits of $500.
Henry M. Rowan, for whom our College is named, passed away in December 2015. He was 92.

Mr. Rowan’s vision and generosity transformed the then-Glassboro State College into the nationally recognized University that proudly bears his name today. The $100-million gift he and his wife Betty gave to the institution in 1992 enabled the school to found the College of Engineering, which was named for him in 2014, and opened the door to numerous initiatives at Rowan University.

Today, thanks to Mr. Rowan and his family, the nationally ranked Henry M. Rowan College of Engineering offers bachelor’s through doctoral degrees in five departments and seven majors, is constructing a new building and continues to grow its enrollment.

Our College remains committed to Mr. Rowan’s ideals, embraces his spirit of innovation and pledges to honor his name always.

For more information on Mr. Rowan and his accomplishments, visit rowan.edu/henryrowan.