B.S/M.A in Mathematics

The dual Bachelor of Science/Master of Arts in Mathematics program provides an opportunity for individuals to pursue advanced study in mathematics and to develop skills that can lead to success in today's technologically oriented society. Whether the goal involves applying mathematics to solve problems in business and industry, teaching in higher education or preparing for further graduate study in mathematics or related fields, this program enables each student to pursue a course of study that is appropriate for his or her interests.

The dual degree program is designed to be completed in five years. Students will begin the first (freshman) year of the program through the third (junior) year fulfilling undergraduate B.S. in Mathematics course requirements and general education course requirements. The fourth (senior) year marks the official start of the dual degree program. In year four students will begin to take some graduate level courses and will complete any remaining undergraduate B.S. in Mathematics and general education course requirements. Year five includes the remaining credits of M.A. in Mathematics courses to be taken as a graduate student.

Admissions Requirements

The following is a list of items required to begin the application process for the 4 + 1 B.S./M.A. in Mathematics program. There may be additional action or materials required for admission to the program. Upon receipt of the materials below a representative from the CGCE Admissions Processing Office will contact you with confirmation or indicating any missing items.

- One letter of recommendation from a faculty member in the Mathematics Department
- Must be currently enrolled in the B.S. in Mathematics undergraduate degree program
- Successfully completed a minimum of 24 credits of undergraduate Mathematics coursework
- A minimum undergraduate Mathematics (major) GPA of 3.5
- Completion of the form Accelerated 4+1 B.S./M.A. in Mathematics Dual Degree Program: Undergraduate student registering for a graduate course
- Completion of the form All Accelerated 4+1 B.S.(B.A.)/M.S.(M.A.) Dual Degree Programs: transition into The Graduate School
Recommended Sequence of Courses for the B.S/M.A in Mathematics

1st YEAR (Freshmen)

FALL SEMESTER (16 s.h.)
Calculus I, Intro to Scientific Programming, Intro to Symbolic Logic, College Comp I, Gen Ed

SPRING SEMESTER (17 s.h.)
Calculus II, Discrete Math, College Comp II, Physics I with Calc, Gen Ed

2nd YEAR (Sophomore)

FALL SEMESTER (17 s.h.)
Calculus III, Linear Algebra, Physics II with Calc, Public Speaking, Gen Ed

SPRING SEMESTER (15 s.h.)
Ordinary Diff Equations, Prob & Stat I, Math Restricted Elective, Gen Ed, Gen Ed (LIT)

3rd YEAR (Junior)

FALL SEMESTER (15 s.h.)
Modern Algebra I, Intro to Real Analysis I, Math Restricted Elective, Gen Ed, Gen Ed (MGS)

SPRING SEMESTER (16 s.h.)
Intro to Complex Analysis, Math Restricted Elective, Math Restricted Elective, Math Restricted Elective (or Gen Ed or Free Elective)

4th YEAR (Senior) – YEAR ONE OF PROGRAM

FALL SEMESTER (15 s.h.)
Track 1 (Even Years)
Grad Linear Algebra, Grad Real Analysis I, Math Restricted Elective, Math Restricted Elective

Track 2 (Odd Years)
Grad Complex Analysis I, Grad Abstract Algebra I, Math Restricted Elective, Math Restricted Elective (or Gen Ed or Free Elective)

SPRING SEMESTER (15 s.h.)
Track 1 (Odd Years)
Math Seminar, Math Restricted Elective (or Gen Ed or Free Elective), Grad Math Elective, Grad Math Elective

Track 2 (Even Years)
Math Seminar, Math Restricted Elective (or Gen Ed or Free Elective), Grad Math Elective, Grad Math Elective

5th YEAR (Graduate Student) – YEAR TWO OF PROGRAM

FALL SEMESTER (9 s.h.)
Track 1 (Odd Years)
Grad Abstract Algebra I, Grad Complex Analysis I, Grad Math Elective (or Grad Math Seminar if offered)

Track 2 (Even Years)
Grad Linear Algebra, Grad Real Analysis I, Grad Math Seminar (or Grad Math Elective)

SPRING SEMESTER (9 s.h.)
Track 1 (Even Years)
Grad Math Elective, Grad Math Elective, Grad Math Seminar (or Grad Math Elective)

Track 2 (Odd Years)
Grad Math Elective, Grad Math Elective, Grad Math Elective (or Grad Math Seminar)

Contact: Dr Ronald Czochor (Czochor@rowan.edu)
B.S. Math Degree Program

The B.S. Math Degree Program consists of 120 semester hours and follows a B.S. degree model. Prerequisites are in brackets []; courses are 3 semester hours (s.h.) unless noted. Required math courses are in **BOLD FACE**.

1. **General Education-51 s.h.**
 For each of the first five banks, only the courses listed in the General Education Guide in the given bank may be selected. General Education electives may be selected from all courses offered in the College of Liberal Arts and Sciences, courses listed in the General Education banks, or the course Health and Wellness.

 I. Arts-3 s.h.
 II. Communications-9 s.h.
 College Composition I
 College Composition II
 Public Speaking
 III. History, Humanities, and Language-6 s.h.
 Introduction to Symbolic Logic (may NOT be taken P/NC)
 IV. Social and Behavioral Sciences-6 s.h.
 V. Science and Mathematics-14 s.h.
 Physics I and II with Calculus (may NOT be taken P/NC)
 Computer Programming and Discrete Math course are required.
 VI. Approved General Electives 13 sh.
 Note:
 (a) One of the above courses must be labeled as Multicultural/Global Studies (M/G).
 (b) One of the above courses must be labeled as General Education Literature (LIT).

2. **Free Electives-9 s.h.**

3. **Major Requirements-60 s.h.**

 I. Required Courses-33 s.h.
 Math 01.130 **Calculus I** [Math 01.122 or equivalent prep.] 4 s.h.
 Math 01.131 **Calculus II** [Math 01.130.] 4 s.h.
 Math 01.230 **Calculus III** [Math 01.131] 4 s.h.
 Math 01.210 **Linear Algebra** [Math 01.131 & Math 03.150] 3 s.h.
 Math 01.230 **Ordinary Differential Equations** [Math 01.230 & Math 01.210] s.h.
 Math 01.330 **Introduction to Real Analysis I** [Math 01.230] 3 s.h.
 Math 01.340 **Modern Algebra I** [Math 01.210 & Phil.09.130] 3 s.h.
 Math 02.360 **Introduction to Probability and Statistics I** [Math 01.131] 3 s.h.
 Math 01.430 **Introduction to Complex Analysis** [Math 01.330] 3 s.h.
 Math 01.499 **Mathematics Seminar** [Senior Standing and successful completion of Math 01.340, Math 01.231, Math 01.330, and one of the following two courses: Math 01.310 or Math 02.360] 3 s.h.

 II. Restricted Electives-27 s.h.
Math 01.205 Technological Tools for Discovering Mathematics [Math 01.102 & Math 01.130] 2 s.h.
Math 01.310 College Geometry [Math 01.131 & Phil.09.130] 4 s.h.
Math 01.331 Introduction to Real Analysis II [Math 01.230] 3 s.h.
Math 01.332 Numerical Analysis [CS.01.102 & Math 01.210] 3 s.h.
Math 01.341 Modern Algebra II [Math 01.340] 3 s.h.
Math 01.352 Theory of Numbers [at least 3 math BS courses] 3 s.h.
Math 01.354 Introduction to Topology [Math 01.330] 3 s.h.
Math 01.386 Introduction to Partial Differential Equations [Math 01.231] 3 s.h.
Math 01.410 History of Mathematics [Math 01.131] 3 s.h.
Math 01.421 Mathematics Field Experience [Math 01.131 & Math 02.360] 3 s.h.
Math 02.361 Introduction to Probability and Statistics II [Math 01.360] 3 s.h.
Math 03.400 Applications of Mathematics [Math 01.210 & Math 01.230] 3 s.h.
Math 03.411 Deterministic Models in Operations Research [Either Math 01.230 and Math 01.210 or Math 01.235 Math for Engineering Analysis I or permission of the instructor] 3 s.h.
Math 03.412 Stochastic Models in Operations Research [Math 02.360 and one of the following: Math 03.411 or Math 01.230 and Math 01.210 or Math 01.235 Math for Engineering Analysis I or Permission of the instructor]

A MAXIMUM of two courses from the following list can be counted as RESTRICTED Electives

CS 07.422 Theory of Computing [CS.04.222, CS.07.210, & Math 01.131] 3 s.h.
Phys 02.300 Modern Physics [1902.201 & Math 01.131] 4 s.h.
Phys 02.315 Analytical Mechanics (4 s.h.)
Phys 02.325 Mathematical Physics [1 Math 01.131 & Phys.02.201 or Ph] 3 s.h.
Phys 02.387 Statistical Physics (3 s.h.)
Phys 02.401 Quantum Mechanics I (4 s.h.)
Phys 02.430 Electricity and Magnetism I (4 s.h.)
Phys 08.400 Physical Chemistry I (3 s.h.)
Phys 08.401 Physical Chemistry II (3 s.h.)
M.A. Math Degree Program

Students will complete a minimum of 30 semester hours of graduate credits in mathematics. Twelve semester hours will provide a core experience for all graduate students, including one course in linear algebra, one course in abstract algebra, and two courses in analysis.

Students will also complete 3-9 s.h. from Bank A, 6-12 s.h. from Bank B, and a minimum of 3s.h. in Seminar and Research. Students should enroll in the required core courses first. The Mathematics Seminar is required and should be taken after most of the course work is completed. The comprehensive exam is usually taken during the Mathematics Seminar.

Prerequisites are in brackets []; courses are 3 semester hours (s.h.) unless noted. Required math courses are in **BOLD FACE**.

<table>
<thead>
<tr>
<th>I. Required Core</th>
<th>12 s.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 01.502</td>
<td>Linear Algebra & Matrix Theory</td>
</tr>
<tr>
<td>Math 01.510</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>Math 01.512</td>
<td>Complex Analysis I</td>
</tr>
<tr>
<td>Math 01.524</td>
<td>Abstract Algebra I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Bank A</th>
<th>3—9 s.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 01.511</td>
<td>Real Analysis II [Math 01.510]</td>
</tr>
<tr>
<td>Math 01.513</td>
<td>Complex Analysis II [Math 01.512]</td>
</tr>
<tr>
<td>Math 01.527</td>
<td>Abstract Algebra II [Math 01.524]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Bank B</th>
<th>6—12 s.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 01.500</td>
<td>Foundations of Mathematics</td>
</tr>
<tr>
<td>Math 01.503</td>
<td>Number Theory</td>
</tr>
<tr>
<td>Math 01.504</td>
<td>Mathematical Logic</td>
</tr>
<tr>
<td>Math 01.505</td>
<td>Probability & Statistics</td>
</tr>
<tr>
<td>Math 01.507</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>Math 01.515</td>
<td>Engineering Applications of Analysis</td>
</tr>
<tr>
<td>Math 01.520</td>
<td>Topics in Applied Mathematics</td>
</tr>
<tr>
<td>Math 01.521</td>
<td>Non-Linear Differential Equations</td>
</tr>
<tr>
<td>Math 01.522</td>
<td>History of Mathematics</td>
</tr>
<tr>
<td>Math 01.525</td>
<td>Modern Geometry</td>
</tr>
<tr>
<td>Math 01.526</td>
<td>Point Set Topology</td>
</tr>
<tr>
<td>Math 01.529</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>Math 03.511</td>
<td>Operations Research I</td>
</tr>
<tr>
<td>Math 03.512</td>
<td>Operations Research II [Math 03.511 OR I]</td>
</tr>
<tr>
<td>Math 03.550</td>
<td>Topics in Discrete Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Seminar and Research</th>
<th>3—6 s.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 01.533</td>
<td>Mathematics Seminar [Completion of 15 s.h. graduate math courses]</td>
</tr>
<tr>
<td>Math 01.550</td>
<td>Independent Study</td>
</tr>
</tbody>
</table>

| Total | 30—33 s.h. |